TR-2014009: Estimating the Norms of Random Circulant and Toeplitz Matrices and Their Inverses II
نویسندگان
چکیده
We combine some basic techniques of linear algebra with some expressions for Toeplitz and circulant matrices and the properties of Gaussian random matrices to estimate the norms of Gaussian Toeplitz and circulant random matrices and their inverses. In the case of circulant matrices we obtain sharp probabilistic estimates, which show that the matrices are expected to be very well conditioned. Our probabilistic estimates for the norms of standard Gaussian Toeplitz random matrices are within a factor of √ 2 from those in the circulant case. We also achieve partial progress in estimating the norm of the Toeplitz inverse. Namely we yield reasonable probabilistic upper estimates assuming certain bounds on the absolute values of two corner entries of the inverse. Empirically we observe that the condition numbers of Toeplitz and general random matrices tend to be of the same order. As the matrix size grows, these numbers grow equally slowly, although faster than in the case of circulant random matrices. 2000 Math. Subject Classification: 15A52, 15A12, 65F22, 65F35
منابع مشابه
TR-2013015: Estimating the Norms of Random Circulant and Toeplitz Matrices and Their Inverses
We estimate the norms of standard Gaussian random Toeplitz and circulant matrices and their inverses, mostly by means of combining some basic techniques of linear algebra. In the case of circulant matrices we obtain sharp probabilistic estimates, which show that these matrices are expected to be very well conditioned. Our probabilistic estimates for the norms of standard Gaussian random Toeplit...
متن کاملTR-2012013: Condition Numbers of Random Toeplitz and Circulant Matrices
Estimating the condition numbers of random structured matrices is a well known challenge (cf. [SST06]), linked to the design of efficient randomized matrix algorithms in [PGMQ], [PIMR10], [PQ10], [PQ12], [PQZa], [PQa], [PQZb], [PQZC], [PY09]. We deduce such estimates for Gaussian random Toeplitz and circulant matrices. The former estimates can be surprising because the condition numbers grow ex...
متن کاملOn the convergence of the inverses of Toeplitz matrices and its applications
Many issues in signal processing involve the inverses of Toeplitz matrices. One widely used technique is to replace Toeplitz matrices with their associated circulant matrices, based on the well-known fact that Toeplitz matrices asymptotically converge to their associated circulant matrices in the weak sense. This often leads to considerable simplification. However, it is well known that such a ...
متن کاملCondition Numbers of Random Toeplitz and Circulant Matrices
Estimating the condition numbers of random structured matrices is a well known challenge (cf. [SST06]), linked to the design of efficient randomized matrix algorithms in [PGMQ], [PIMR10], [PQ10], [PQ12], [PQZa], [PQa], [PQZb], [PQZC], [PY09]. We deduce such estimates for Gaussian random Toeplitz and circulant matrices. The former estimates can be surprising because the condition numbers grow ex...
متن کاملExact Determinants of the RFPrLrR Circulant Involving Jacobsthal, Jacobsthal-Lucas, Perrin and Padovan Numbers
Circulant matrix family occurs in various fields, applied in image processing, communications, signal processing, encoding and preconditioner. Meanwhile, the circulant matrices [1, 2] have been extended in many directions recently. The f(x)-circulant matrix is another natural extension of the research category, please refer to [3, 11]. Recently, some authors researched the circulant type matric...
متن کامل